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Abstract. A notion of resource-bounded Baire category is developed for
the class PC[0,1] of all polynomial-time computable real-valued functions
on the unit interval. The meager subsets of PC[0,1] are characterized in
terms of resource-bounded Banach-Mazur games. This characterization
is used to prove that, in the sense of Baire category, almost every func-
tion in PC[0,1] is nowhere differentiable. This is a complexity-theoretic
extension of the analogous classical result that Banach proved for the
class C[0, 1] in 1931.

1 Introduction

Baire category and Lebesgue measure provide a structural framework to classify
the relative sizes of infinite sets in various spaces. In the context of complexity
theory, the space that we are most familiar with is the space of all languages,
i.e., the Cantor space. Unfortunately, since most sets of languages of interest (P,
NP, etc.) inside of the Cantor space are countable, classical versions of category
and measure cannot classify the relative sizes of these sets in any nontrivial way.
To remedy this situation, computable versions of category were investigated
by Mehlhorn [18] and Lisagor [10], and resource-bounded versions of measure
and category were developed by Lutz [11–14], Fenner [6, 7], Mayordomo [16, 17],
Allender and Strauss [1], Strauss [23], and others. Resource-bounded category
and measure have been used successfully to examine the structure of complexity
classes in a variety of contexts [2, 4, 24, etc.]. The recent surveys by Lutz [15]
and Ambos-Spies and Mayordomo [3] provide an overview of work in this area.

In contrast to classical complexity theory, the complexity theory of real func-
tions [9] works primarily in the space C[0, 1] consisting of all continuous functions
over the closed interval [0, 1]. As in the Cantor space, all countable subsets of
C[0, 1] are small (meager, measure 0) in the senses of Baire category and Lebesgue
measure. Hence, these classical theories cannot classify sets of computable real
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functions in any nontrivial way. To remedy this situation, we develop a resource-
bounded version of Baire category in C[0, 1] and use it to investigate the distri-
bution of differentiability in PC[0,1], the class of all polynomial-time computable,
continuous functions over the closed interval [0, 1].

Let ND = {f ∈ C[0, 1]
∣∣∣ f is nowhere differentiable }, where C[0, 1] is the

space of all continuous functions f : [0, 1] −→ R. In the nineteenth century,
Weierstrass [25] exhibited a function f ∈ ND. Subsequently, many other such
functions have been shown to exist [26, etc.]. In 1931 Banach [5] proved that
ND is a comeager subset of C[0, 1] in the sense of Baire category. That is,
C[0, 1] − ND is meager. Banach’s result implies the result of Weierstrass, since
C[0, 1] is not meager. However, Banach’s result says more — it says that any
subset of C[0, 1] that is not meager contains a nowhere differentiable function.
Hence, the existence of nowhere differentiable functions with various properties
can be shown by direct application of the category result.

As mentioned above, PC[0,1] is a countable, and hence meager subset of
C[0, 1]. Hence, Banach’s result cannot be used to demonstrate the existence
of a polynomial-time computable real valued function that is nowhere differ-
entiable. Indeed, Banach’s result leaves the possibility that no polynomial-time
computable function is nowhere differentiable. However, this is not the case. As
shown by Ko [9], certain well-known nowhere differentiable functions are, in fact,
polynomial-time computable. Indeed, related results for computable functions
were shown much earlier in the work by Myhill [19] and Pour-El and Richards
[21]. Here we show that ND is comeager in PC[0,1], a result that implies both
Banach’s original result [5] and Ko’s later result [9] for the polynomial-time
computable functions.

The paper is structured as follows. In section 2, we give the necessary pre-
liminary notation and definitions from real analysis, Baire category, and the
complexity theory of real functions. In section 3, we define a resource-bounded
Baire Category for C[0, 1]. The central definition is that of the p-meager sets in
C[0, 1]. As we show, every p-meager set is meager in the classical sense. Follow-
ing the work of Lutz [12, 13], Fenner [6, 7], and Strauss [23], we also show that
the class of p-meager sets forms an ideal of “small” sets. That is, the p-meager
sets satisfy the following conditions: (i) subsets of p-meager sets are p-meager,
(ii) the p-meager sets are closed under finite unions, (iii) the p-meager sets are
closed under effective countable unions, (iv) for each function f ∈ PC[0,1], {f}
is p-meager, and (v) PC[0,1] is not p-meager. In addition, we give a characteri-
zation of the p-meager sets in terms of resource-bounded Banach-Mazur games
in C[0, 1]. In section 4, we use this characterization to prove our main result,
namely, that ND[0, 1] is p-meager. This implies that the set of polynomial-time
computable functions that have a derivative at some point x ∈ [0, 1] is a negli-
gibly small subset of PC[0,1]. The proofs of all technical results in section 3 are
omitted from this extended abstract.



2 Preliminaries

We begin by presenting the necessary notation and definitions from real analysis,
Baire category, and complexity theory of real functions. For a more detailed
presentation, see Rudin [22], Oxtoby [20], or Ko [9]. To begin, let C[0, 1] be the
set of continuous real valued functions on the compact domain [0, 1]. Given any
functions f and g in C[0, 1], the distance between f and g is

d(f, g) = ||f − g|| = sup
x∈[0,1]

|f(x)− g(x)|.

It is well-known that C[0, 1] along with the associated distance function d form
a complete metric space.

Since C[0, 1] is a complete metric space, we will sometimes call a function
f ∈ C[0, 1] a point. For r > 0, the neighborhood of radius r about the function
f is the set Nr(f) containing all functions g such that d(f, g) < r. Let S be a
subset of C[0, 1]. A function f is a limit point of S if for every r > 0 there exists
a g 6= f such that g ∈ Nr(f)∩ S. If every function f that is a limit point of S is
contained in S, then S is closed.

Given a sequence f0, f1, . . . , fn, . . . of functions in C[0, 1], the limit of this
sequence is defined point-wise. That is, if the sequence {fn(x)} converges for each
x ∈ [0, 1], then the limit of {fn} is the function f defined by f(x) = lim

n−→∞
fn(x).

Since C[0, 1] is a compact space, the limit of a sequence of continuous functions
is also continuous.

If there is an r > 0 such that Nr(f) ⊆ S, then the function f is an interior
point of S. If every function f ∈ S is an interior point of S, then S is open. If
every function in C[0, 1] is contained in S or a limit point of S (or both), then S
is dense in C[0, 1].

According to [8], a set S is nowhere dense in C[0, 1] if and only if for each
open set O, O ∩ S is not dense in O. Equivalently, a set S is nowhere dense if,
for every open set O, there exists an open set O′ ⊆ O such that O′ ∩ S = ∅. A
set S is meager (a set of first category) in C[0, 1] if it is a countable union of a
family nowhere dense sets. A set S is nonmeager (a set of second category) if it
is not meager. A set S is comeager (residual) if its complement is meager.

Following the work of Ko [9], we use the dyadic rational numbers D = {m ·
2−n|m ∈ Z and n ∈ N} as finite approximations to real numbers. Because the
dyadic rational numbers are dense in R, it is possible to define the topology
of C[0, 1] in terms piece-wise linear functions with dyadic rational endpoints. A
function f ∈ C[0, 1] is a piece-wise linear function with dyadic rational endpoints
if there exist points a0 = 0 < a1 < a2 . . . < an = 1 ∈ D such that f(ai) ∈ D
and for ai < x < ai+1, f(x) = f(ai) + f(ai+1)−f(ai)

ai+1−ai (x − ai). A basic open set
O is a set O = Nd(f), where d ∈ D ∪ {∞}, d > 0, and f is a piece-wise linear
function with dyadic rational endpoints. It is well-known that a set S ⊆ C[0, 1]
is nowhere dense if and only if for every basic open set O there exists a basic
open set O′ ⊆ O such that O′ ∩ S = ∅.

Here we are primarily interested in PC[0,1], the set of functions in C[0, 1] that
are feasibly computable. Using Theorem 2.22 of Ko [9, p. 59], we define PC[0,1]



to be the set of functions f ∈ C[0, 1] where there exists a sequence of piece-wise
linear functions {fn} with dyadic rational endpoints and a polynomial-function
m such that

(i) for each n ∈ N and 0 ≤ i ≤ 2m(n), fn( i
2m(n) ) ∈ D,

(ii) For each n and 0 ≤ i < 2m(n), |fn( i
2m(n) )− fn( i+1

2m(n) )| ≤ 2−n,
(iii) for each n ∈ N and x ∈ [0, 1], |fn(x)− f(x)| ≤ 2−n,
(iv) the polynomial function m(n) : N→ N is computable in time p(n), and the

function ψ : D×N→ D defined by ψ( i
2m(n) , n) = fn( i

2m(n) ) is computable in
time q(m(n) + n). Here, both p and q are polynomials.

Finally, we define DTIME(nc)C[0,1] to be the set of all functions f ∈ PC[0,1]

satisfying the above conditions and the condition that p(n) + q(m(n) + n) =
O(nc).

3 Resource-Bounded Baire Category in C[0,1]

Let B be the set of all basic open sets. Then, a set X ⊆ C[0, 1] is nowhere
dense if there exists a function α : B → B such that for every basic open set
x ∈ B, α(x) ⊆ x and α(x) ∩ X = ∅. Such a function α “testifies” that X is
nowhere dense. Intuitively, such a function α takes a basic open set and creates
a refinement of that basic open set that misses X. Similarly, a set X =

⋃∞
i=1Xi

is meager if there exists a function α′ : N × B → B such that the function
α′i(x) = α′(i, x) testifies that Xi is nowhere dense.

Since each basic open set has a finite binary representation, a natural ap-
proach to resource-bounded Baire category on C[0, 1] might be to require that
α′ be computable in some resource-bound, e.g., X is ∆-meager if there exists a
function α′ that testifies that X is meager and α′ is computable in the resources
given by ∆. Unfortunately, this natural approach does not allow for a reason-
able notion of category inside of PC[0,1] because a basic open set’s finite binary
representation may need to be exponentially large. To remedy this situation, we
instead examine functions that refine segments of basic open sets. We begin by
presenting the necessary definitions.

Definition 1. A neighborhood component code is a 6-tuple κ = 〈n, r, a, b, c, d〉
such that n, a, b ∈ N, c, d ∈ Z, r ∈ Z ∪ {∞}, and 0 ≤ a

2n < b
2n ≤ 1. The

neighborhood component corresponding to a neighborhood component code κ =
(n, a, b, c, d, r) is the set N(κ) consisting of all functions f ∈ C[0, 1] such that for
all x ∈ [ a2n ,

b
2n ], ϕκ(x)−2r < f(x) < ϕκ(x)+2r, where ϕκ(x) = d−c

b−a (x− a
2n )+ c

2n .

Each basic open set can be viewed as a sequence of consistent neighborhood
components. This notion of consistency is defined as follows.

Definition 2. A neighborhood component code κ1 = 〈n1, r1, a1, b1, c1, d1〉 meets
κ2 = 〈n2, r2, a2, b2, c2, d2〉 if n1 = n2, r1 = r2, b1 = a2, and d1 = c2. A neigh-
borhood code on an interval [a, b] is a finite sequence κ = (κ1, κ2, . . . , κl) of
neighborhood component codes such that κi meets κi+1 for all 1 ≤ i < l, a1

2n = a,



and bl
2n = b, where n is the common first component of all the κi. The neigh-

borhood corresponding to a neighborhood code κ on an interval [a, b] is the set
N(κ) =

⋂n
i=1N(κi).

It is easy to see that every basic open set is the neighborhood corresponding
to some neighborhood code κ on [0, 1]. In order to define the meager sets, we
will need a notion of the refinement of a neighborhood.

Definition 3. A refinement of a neighborhood component code κ = 〈n,r,a,b, c, d〉
is a neighborhood code κ = (κ1, . . . , κl) on [ a2n ,

b
2n ] such that N(κ) ⊆ N(κ) and

r1 < r.

Now, let N0 be the set of all neighborhood component codes, and let N be
the set of all neighborhood codes. A constructor is a function γ : N0 −→ N such
that

(i) (∀κ ∈ N0)γ(κ) is a refinement of κ, and
(ii) γ is consistent in the sense that if κ1 meets κ2 then the right hand component

of γ(κ1) meets the left hand component of γ(κ2).

Given a constructor α, it is natural to extend the application of α from
individual neighborhood component codes to full neighborhood codes. Given
a constructor α, define α : N −→ N by α((κ1, . . . , κl)) = (α(κ1), . . . , α(κl)),
where (κ1, . . . ,κl) is the vector containing the individual components (in order)
of the vectors κ1, . . . ,κl.

Such constructors can be used to testify that sets are nowhere dense.

Theorem 1. Let α be a constructor and let X ⊆ C[0, 1]. If it is the case that
N(α(κ))∩X = ∅ for every neighborhood code κ that corresponds to a basic open
set, then X is nowhere dense.

Proof. This is immediate from the fact that α is a constructor.

It is not known whether the converse is true, i.e., that every nowhere dense
set has a constructor that testifies that it is nowhere dense. Nevertheless, this
approach provides a reasonable notion of category in PC[0,1].

To define a notion of resource-bounded Baire Category on PC[0,1], we apply
resource bounds to our constructors. A constructor γ is computable in polyno-
mial time if the function γ̂ : N0 × N −→ N0 ∪ {⊥} defined by

γ̂(κ, i) =
{
κi if 1 ≤ i ≤ l
⊥ otherwise,

where γ(κ) = (κ1, . . . , κl), is computable in time polynomial in |κ| + |i|. Note
that we assume that κ = 〈n, r, a, b, c, d〉 is encoded with n and r represented in
unary with an additional sign bit for r. It follows that |κ| ≥ n+ |r|.

An indexed constructor is a function α′ : N × N0 −→ N such that α′(i, ◦)
is a constructor for each i ∈ N. An indexed constructor α′ is computable in
polynomial time if α̂′(i, κ, j) is computable in time bounded by a polynomial in
|i|+ |κ|+ |j|. We will use indexed constructors to define a notion of meager sets
in PC[0,1].



Definition 4. A set X is p-meager if X =
∞⋃
i=1

Xi and there exists a polynomial-

time computable indexed constructor α′ such that α′(i, ◦) testifies that Xi is
nowhere dense. A set X is p-comeager if X = C[0, 1]−X is p-meager. A set X
is meager in PC[0,1] if X ∩PC[0,1] is p-meager. A set X is comeager in PC[0,1] if
X is meager in PC[0,1].

Example 1. The set X = {f ∈ C[0, 1]|f(1/4) = f(3/4)} is p-meager. Hence, X
is meager in PC[0,1].

As shown in the previous example, certain simple sets of functions can be
shown to be p-meager using Definition 4. In some cases, it is desirable to work
with a modified definition that uses a slightly restricted notion of an indexed
constructor. We say that a constructor α : N0 → N is q-bounded if there
exists a polynomial q such that for every κ ∈ N0, if α(κ) = (κ1, . . .) and
κ1 = 〈n, r, a, b, c, d〉 then n ≤ q(|r|). An indexed constructor α′ : N×N0 → N is
q-bounded if there exists a single polynomial q such that α′(i, ◦) is q-bounded for
every i. Notice that it is easy to prove that X =

⋃∞
i=1Xi is p-meager if and only

if there exists a polynomial-time computable q-bounded indexed constructor α′

such that α′(i, ◦) testifies that Xi is nowhere dense.
The rationale for using this modified definition of indexed constructors lies

in that fact that constructors implicitly define real valued functions. To see
this, begin with a basic open set O and iteratively apply some constructor α.
If α is computable, the single function in the intersection of the closures of
these basic open sets is a computable function. However, if α is computable
in polynomial time such a construction may not produce a polynomial-time
computable function unless α is q-bounded.

We next give an equivalent definition of the p-meager sets in terms of resource-
bounded Banach-Mazur games.

3.1 Resource-Bounded Banach-Mazur Games

It is well-known [20] that Baire category can be characterized in terms of a two
person game of perfect information called the Banach-Mazur game. In this con-
text, a Banach-Mazur game is a two person game where the players alternately
restrict a set of viable functions. The game begins with C[0, 1], the set of all con-
tinuous functions on [0,1], and a set X ⊆ C[0, 1]. Player I begins by producing
a basic open set B1. Player II then produces a basic open set B2 ⊆ B1 whose
radius decreases by at least one half. The game continues forever with player I
and player II alternately restricting the resulting basic open set. The result of
the game is the single function f contained in the intersection of the closure of
the basic open sets produced during each round of the game. Player I wins if
f ∈ X. Player II wins if f 6∈ X. A set X is meager if and only if there is a
strategy so that player II always wins on X.

Here we characterize the p-meager sets in terms of Banach-Mazur games
where the two players are indexed constructors. Let α and β be indexed construc-
tors, and let N(κ) be a basic open set. The kth round of the Banach-Mazur game



[α, β;X] consists of applying α(k, ◦) to κ and then applying β(k, ◦) to α(k,κ).
The game starts with κ = (〈0,∞, 0, 1, 0, 0〉). The neighborhood corresponding to
κ is the neighborhood of radius∞ about the piecewise linear function f(x) = 0.
This neighborhood contains all of C[0, 1]. Now, define κi as follows.

κ0 = κ = (〈0,∞, 0, 1, 0, 0〉)
κ2i+1 = α(i,κ2i), κ2i+2 = β(i,κ2i+1).

The result of the game [α, β;X] is the unique function f ∈
∞⋂
i=0

N(κi), where

N(κi) is the closure of the neighborhood corresponding to κi. Player I wins if
f ∈ X, and player II wins if f 6∈ X.

It is straightforward to prove that if both player I and player II are polynomial-
time computable indexed constructors that f ∈ PC[0,1].

Theorem 2. Let α and β be polynomial-time computable q-bounded indexed
constructors. Then, the unique function f that is the result of the game [α, β;X]
is an element of PC[0,1].

Similarly, if f ∈ PC[0,1], then f is the result of some Banach-Mazur game.

Theorem 3. If f ∈ PC[0,1], then there exist polynomial-time computable q-
bounded indexed constructors α and β such that f is the result of the game
[α, β;X].

If player II (β) to wins the game [α, β;X] for all possible α, then this is
equivalent to X being a p-meager set.

Theorem 4. Let X ⊆ C[0, 1]. The following are equivalent.

a. X is p-meager.
b. There exists a polynomial-time q-bounded indexed constructor β such that

player II wins the game [α, β;X] for all indexed constructors α.

3.2 Basic Results

We end this section with a collection of basic results concerning the p-meager
sets. Following previous work on resource-bounded measure and category [12,
7, 23, etc.], we show that the p-meager sets in PC[0,1] satisfy those conditions
expected for a class of small sets, i.e., the p-meager sets are closed under subset,
finite union, and appropriate countable union; each singleton {f} for f ∈ PC[0,1]

is p-meager; and PC[0,1] is not p-meager. We begin by giving a definition of an
appropriate countable union of p-meager sets.

Definition 5. A p-union of p-meager sets is a set X such that there exists a
polynomial-time indexed constructor α and a family of sets {Xi|i ∈ N} such that

(i) X =
∞⋃
i=1

Xi.



(ii) For each i, the indexed constructor αi defined by αi(j,κ) = α(〈i, j〉,κ) tes-
tifies that Xi is p-meager.

Theorem 5. The following conditions concerning the p-meager sets hold.

(i) If X is p-meager and Y ⊆ X, then Y is p-meager.
(ii) If X and Y are p-meager, then X ∪ Y is p-meager.

(iii) If X is a p-union of p-meager sets, then X is p-meager.
(iv) If f ∈ PC[0,1], then {f} is p-meager.

Theorem 6. (Baire Category Theorem) PC[0,1] is not p-meager.

4 Nowhere Differentiability in PC[0,1]

We now present a nontrivial application of the theory of resource-bounded Baire
category in PC[0,1]. Here we examine the distribution of differentiability in PC[0,1].
As we show in Theorem 7 below, the set of nowhere differentiable functions,
ND[0, 1], is p-comeager and hence comeager in PC[0,1]. This result implies the
classical result of Banach and existence of nowhere differentiable functions in
PC[0,1]. The proof of Theorem 7 requires the following technical lemma.

Lemma 1. If κ = 〈n, r, a, b, c, d〉 is a neighborhood component code with central
segment L and L′ is any segment P1P2 within κ, i.e., P1 = ( a

2n , y1) and P2 =
( b

2n , y2) with |y1 − c
2n | < 2r and |y2 − d

2n | < 2r, then the slopes m and m′ of L
and L′ respectively satisfy |m−m′| < 2n+r+1.

Theorem 7. ND[0, 1] is p-comeager.

Proof. We define a polynomial-time computable clocked constructor γ with
which player II can force the result of a Banach-Mazur game to be an element
of ND[0, 1]. Hence ND[0, 1] is p-meager and ND[0, 1] is p-comeager. In our con-
struction, γ(i, ◦) does not depend on the parameter i. Hence, we write γ(κ) for
γ(i, κ).

Given a neighborhood component code κ = 〈n, r, a, b, c, d〉 we define γ(κ) as
follows: first select the least n′ ∈ N such that n′ > n, n′ > |r|, and

2n
′+r > 8|r|+ 4. (1)

Second, select the greatest r′ ∈ Z such that r′ < r and

2n
′+r′+1 < |r|. (2)

These choices of n′ and r′ depend only on n and r and can be done consistently
(in polynomial-time) across all of [0,1].

The constructor γ(κ) creates l = (b − a) · 2n′−n subintervals of width 2−n
′
.

The structure of new neighborhood components within the subintervals depends
on the slope m = d−c

b−a of the central segment of κ. There are two cases.



Case 1: |m| > 2|r|+1. In this case, since the slope is already steeper than |r|, we
attempt to keep the slope of the central segment in each subinterval as close to
m as possible. Define γ̂(κ, i) = κ′i = 〈n′, r′, a′i, b′i, c′i, d′i〉 as follows. Let n′ and r′

be as given earlier. For 1 ≤ i ≤ l, a′i = a·2n′−n+(i−1), b′i = a′i+1, c′1 = c·2n′−n,
and d′l = d · 2n′−n. Note that a′1

2n′
= a

2n , b′l
2n′

= b
2n , c′1

2n′
= c

2n , and d′l
2n′

= d
2n . For

2 ≤ i ≤ l, let c′i = d′i−1 = ϕ1(i − 1), where ϕ1(i) = c′1 + dm · ie. Since n′ > |r|
and r′ < r, it follows that these subintervals lie within κ. Moreover, the slope of
the central segment for each subinterval is

m′ =
d′i − c′i
b′i − a′i

= ϕ1(i)− ϕ1(i− 1) = dm · ie − dm(i− 1)e.

Since x ≤ dxe < x + 1, it is easy to show that m − 1 < m′ < m + 1. It follows
that |m′| > 2|r|.

By Lemma 1, the slope m′′ for any segment L′′ within κ′i = 〈n′, r′, a′i, b′i, c′i, d′i〉
will differ from m′, the slope of the central segment by at most |m′′ − m′| <
2n
′+r′+1. Since 2n

′+r′+1 < |r|, we have |m′′ − m′| < |r|. Since |m′| > 2|r|, it
follows that |m′′| > |r|.

��� ����� ���
	��

��� � ��� �����	���� �

Fig. 1. A closer view of Case 2

Case 2: As seen in Figure 1, if |m| ≤ 2|r|+1, to make the slopes of the refinement
steeper than |r| we introduce a sawtooth neighborhood inside of κ so that the
absolute value of the slope of the central segment of each component is at least
2|r|. As before, the original neighborhood component code is broken down into
l = (b − a) · 2n′−n subintervals of width 2−n

′
. For each 1 ≤ i ≤ l, let a′i =

a · 2n′−n + (i− 1) and b′i = a′i + 1. As before, set c′1 = c · 2n′−n and d′l = d · 2n′−n.
This provides consistency with the neighboring segments. For 2 ≤ i ≤ l − 1, let

d′i−1 = c′i = ϕ2(i) =
{
c′1 + bm(i− 1) + 2n

′+r − 2n
′+r′c if i is even

c′1 + dm(i− 1)− 2n
′+r + 2n

′+r′e if i is odd.



Notice that this definition places the neighborhood γ(κ) inside of κ.
Now let’s examine the slopes of the central segments in each subinterval.

When 2 ≤ i ≤ l − 1 and i is odd, the slope of the central segment of κ′i is

m′ =
d′i − c′i
b′i − a′i

= d′i − c′i = bm · i+ 2n
′+r − 2n

′+r′c − dm(i− 1)− 2n
′+r + 2n

′+r′e

= bm · i− 2n
′+r′c − dm(i− 1) + 2n

′+r′e+ 2n
′+r+1

The final equality holds because 2n
′+r is an integer whenever n′ > |r|. Moreover,

because x − 1 < bxc ≤ x and x ≤ dxe < x + 1, it is easy to show that m +
2n
′+r+1 − 2n

′+r′+1 − 2 < m′ ≤ m + 2n
′+r+1 − 2n

′+r′+1. Since 2n
′+r > 8|r| + 4,

2n
′+r′+1 < |r|, and |m| ≤ 2|r| + 1, it follows that m′ > 13|r| + 5. Similarly, we

can show that m′ < −13|r| − 5 when 2 ≤ i ≤ l − 1 and i is even.
When i = 1, the slope of the central segment of κ′1 is

m′ =
d′1 − c′1
b′1 − a′1

= d′1 − c′1 = bm+ 2n
′+r − 2n

′+r′c = bm− 2n
′+r′c+ 2n

′+r.

Because r′ < r, it is easy to show that m− 1 + 2n
′+r−1 < m′ ≤ m+ 2n

′+r. Since
|m| ≤ 2|r|+ 1 and 2n

′+r−1 > 4|r|+ 2, it follows that m′ > 2|r|. Similarly, we can
show that |m′| > 2|r| when i = l.
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Fig. 2. A closer view of Case 2

Consider a segment L′′ with slope m′′ inserted into one of the neighborhoods
for these l subintervals, e.g., see Figure 2. If we apply Lemma 1 to the neighbor-
hood κ′i, we have |m′′ −m′| < 2n

′+r+1. Since |m′| > 2|r| and 2n
′+r+1 < |r|, it

follows that |m′′| > |r|.
Thus, in either case, we have that any segment lying “within” a neighborhood

component code κ′i of γ(〈n, r, a, b, c, d〉) has slope that exceeds r in absolute value.
We now complete the proof through the use of two claims.



Claim. γ is polynomial-time computable.

Proof. Given n, r, we can find n′ and r′ satisfying (1) and (2) in polynomial-time
in the size of n and r. In addition, we can compute the near linear functions ϕ1(i)
and ϕ2(i) in polynomial-time in the size of the input and |i|, and hence we can
compute κi = γ̂(κ, i) in polynomial time.

Claim. If f(x) : [0, 1]→ R is the result of a Banach Mazur game in which player
II uses strategy γ, then f ∈ ND[0, 1]. Hence, ND[0, 1] is p-meager and ND[0, 1]
is p-comeager.

Proof. Let x ∈ [0, 1], ε > 0, M > 0 be given, and let f(x) be the result of the
a Banach-Mazur game in which player II used strategy γ. Since n, |r| → ∞,
at some point during the game there must have been a neighborhood code κ
given to player II with a component code κ such that x lies in κ′i = γ(κ, i) =
〈n′, r′, a′i, b′i, c′i, d′i〉 with 2−n

′
< ε, |r| > M , and a′i

2n′
≤ x ≤ b′i

2n′
.

Now, let P1 = ( a
′
i

2n′
, f( a

′
i

2n′
)), P = (x, f(x)), and P2 = ( b′i

2n′
, f( b′i

2n′
)). By the

construction of γ, the slope of m of P1P2 must satisfy |m| > |r| > M . By the
triangle inequality, if m1 is the slope of P1P and m2 is the slope of PP2, one of
m1 or m2 must satisfy |mi| > |r| > M . Hence, P1 or P2 provides a point which
yields a difference quotient whose absolute value exceeds M at x. So, f fails to
be differentiable at x since M and ε were arbitrary. Further, x was arbitrary,
and so f ∈ ND[0, 1].

Since player II forced f into ND[0, 1] via γ, ND[0, 1] is p-comeager. This
completes the proof of Theorem 7.

Corollary 1. (Banach [5]) ND[0, 1] is comeager.

Proof. This follows from that fact that every p-meager set is meager.

Corollary 2. (Ko [9]) There exists a function f ∈ PC[0,1] that is nowhere
differentiable.

Proof. This follows from Theorems 6 and 7.
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