
CS 220 Final Project

In this final project, you will use various audio/music utilities that we have written during the semester to
create a program that produces a version of the Wartburg loyalty song.

Format of Song Files

I have provided a file that contains information about the loyalty song in a format that is a simplified version
of "abc notation." This is is a text-based notation that is used by some song archives that you can find on the
Internet.

Looking at the file loyalty.sng you will see that it consists of some general information at the top
followed by 4 "parts" separated by blank lines. The parts provide sequences of notes that make up the
simultaneous parts of a song. You can think of these as the parts played by different instruments or sung by
different voices. In musical termns, the loyalty song is written in 4-part harmony.

Each part is basically just a sequence of notes (pitch and duration). Those who are musically inclined
can probably figure out the notation. However, you really don’t need to decipher the notation unless you
want to construct your own song files, because I have supplied a class to take care of reading the files for
you.

Using the SongReader class

The provided SongReader class will take care of reading the song file for you. Here’s a little interactive
demo:

>>> from songreader import SongReader
>>> data = SongReader("loyalty.sng")
>>> data.info
{’TITLE’: ’ Wartburg Loyalty’, ’TEMPO’: ’ 120’}
>>> len(data.parts)
4
>>> data.parts[0][:5]
[(’Ab4’, 1.5), (’Ab4’, 0.5), (’G4’, 1.0), (’Ab4’, 1.0), (’F4’, 1.0)]

As you can see, when you create a SongReader you give it the name of the file to read. It processes
the file and provides the information from the file in 2 public instance variables, info and parts. The
former is a dictionary with the info from the top of the file, and the latter is a list of the parts that were found
in the file.

Notice that the reader found 4 parts in this file. The individual parts can be accessed by subscripting
parts. The last interaction shows the first 5 notes in the first part. The notes are provided as a sequence
of (pitch, beats) pairs. The duration of a note is in terms of musical beats, not seconds. The actual time
duration of the note is determined by the tempo of the song (given in beats per minute). To get the duration
in seconds, we need a unit conversion:

duration = beats/tempo * 60

Following this approach, we can easily adjust the tempo of the song when producing ("rendering") the
audio file.

1



Turning Songs into Audio

The main work of your program will be done by another class called a SongPlayer. An outline of this
class is provided in songplayer.py. You should read the specifications in that file carefully to see what
it does. As an example, here’s a "quick and dirty" way to listen to 5 seconds of audio from "rendering" the
first two parts of the loyalty using a plain vanilla string synthesizer:

from songplayer import SongPlayer
from stringsynth import StringSynth

player = SongPlayer("loyalty.sng")
synth = StringSynth()
player.render_part(0, synth)
player.render_part(1, synth)
player.play_audio(5)

Of course we can get much more interesting results by using different synthesizers (or at least different
synthesizer settings) for various parts. You can also render a single part multiple times using different
synthesizers to produce more "textured" sounds.

Assignment

Your assignment is to implement the SongPlayer class and also write a program that generates a loyalty4.wav
file with a nice 4-part rendering of the Wartburg loyalty. You should turn in 3 files:

songplayer.py -- The completed SongPlayer class
loyalty.py -- Your program that generates ‘‘loyalty4.wav‘‘
loyalty4.wav -- Your audio file

Bonus points will be awarded for the most interesting wav files. I’m especially interested in ones that
sound particularly nice. Note you should make sure to submit exactly the version of the loyalty.py that
produced the file. If running your program with MY class produces a result that sounds different from your
file, that means your SongPlayer does not match the specification.

Have fun!

2


	CS 220 Final Project
	Format of Song Files
	Using the SongReader class
	Turning Songs into Audio
	Assignment

