
Simple, not Simplistic
Squeezing the most from CS1

Python!

John M. Zelle, Ph.D.
Wartburg College

 Outline

 Motivation

 Introduction to Python

 Approaches to CS1

 Python Resources

 Conclusions

 Questions?

 Background

 Teaching since 1986

 CS1 languages: Pascal, C++, Java (also CS0 BASIC)

 Favorite class but...
 increasingly frustrating

 Students stopped "getting it"
 Student confusion, apathy, dropout
 Inability to complete simple programs
 Declining student evaluations

 Is it me?

 Rethinking CS1

 Learning Challenges
 More material (software development, OOP, GUIs)
 Complex Languages (systems languages Ada, C++, Java)
 Complex Environments
 Too much "magic"

 Teaching Challenges
 Recruiting Majors
 Serving Nonmajors

 Einstein: Make everything as simple as possible, but not

simpler.

 The March of Progress (Cay Horstmann)

 C | Pascal
 printf("%10.2f", x); | write(x:10:2)

 C++
 cout << setw(10) << setprecision(2)
 << showpoint << x;

 Java
 java.text.NumberFormat formatter
 = java.text.NumberFormat.getNumberInstance();
 formatter.setMinimumFractionDigits(2);
 formatter.setMaximumFractionDigits(2);
 String s = formatter.format(x);
 for (int i = s.length(); i < 10; i++)
 System.out.print(’ ’);
 System.out.print(s);

 Enter Python

 Python: A free, portable, dynamically-typed,

object-oriented scripting language

 Combines software engineering features of traditional

systems languages with power and flexibility of scripting
languages

 Real world language

 Batteries included

 Note: Named after Monty Python’s Flying Circus

 Why Use Python?

 Traditional languages (C++, Java) evolved for large-scale

programming
 Emphasis on structure and discipline
 Simple problems != simple programs

 Scripting languages (Perl, Python, TCL) designed for

simplicity and flexibility.
 Simple problems = simple, elegant solutions
 More amenable to experimentation and incremental development

 Python: Near ideal first language, useful throughout

curriculum

 We’ve used it in CS1 since 1998

 First Program (Java Version)

 Assignment: Print "Hello CCSC" on screen

 public class Hello{
 public static void main(String [] args){
 System.out.println("Hello CCSC");
 }
 }

 Note: Must be in "Hello.java"

 First Program (Python Version)

 Assignment: Print "Hello CCSC" on screen

 print "Hello CCSC"

 Or...

 def main():
 print "Hello CCSC"

 main()

 "Real" Program: Chaos.py

 #File: chaos.py
 # A simple program illustrating chaotic behavior.

 def main():
 print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 x = 3.9 * x * (1 - x)
 print x

 main()

 Example in IDLE

 Basic Statements

 Output
 print <expr1>, <expr2>, ..., <exprn>
 Note: all Python types have printable representations

 Simple Assignment
 <var> = <expr>
 myVar = oldValue * foo + skip

 Simultaneous Assignment
 <var1>, <var2>, ... = <expr1>, <expr2>, ...
 a,b = b,a

 Assigning Input
 input(<prompt>)
 myVar = input("Enter a number: ")
 x,y = input("Enter the coordinates (x,y): ")

 Example Program: Fibonacci

 # fibonacci.py
 # This program computes the nth Fibonacci number

 n = input("Enter value of n ")

 cur,prev = 1,1
 for i in range(n-2):
 cur,prev = prev+cur,cur

 print "The nth Fibonacci number is", cur

 Teaching Tip: Dynamic Typing

 Pluses
 less code
 less upfront explanation
 eliminates accidental redeclaration errors

 Minuses
 typo on LHS of = creates new variable
 allows variables to change type

 Bottom-line: I prefer dynamic types
 Many (most?) type errors are declaration errors
 Actual type errors are still detected
 Finding type errors goes hand-in-hand with testing
 Less student frustration

 Teaching Tip: Indentation as Syntax

 Pluses
 less code clutter (; and {})
 eliminates most common syntax errors
 promotes and teaches proper code layout

 Minuses
 occasional subtle error from inconsistent spacing
 will want an indentation-aware editor

 Bottom-line: Good Python editors abound.
 This is my favorite feature.

 Numeric Types

 int: Standard 32 bit integer
 32 -3432 0

 long int: Indefinitely long integers
 32L 9999999999999999

 floating-point: Standard double-precision float
 3.14 2.57e-10 5E210 -3.64e+210

 complex: Double precision real and imaginary components
 2+3j 4.7J -3.5 + 4.3e-4j

 User-defined types (operator overloading)

 Numeric Operations

 Builtins
 +, -, *, /, %, **, abs(), round()

 Math Library
 pi, e, sin(), cos(), tan(), log(),

log10(), ceil(), ...

 Example Numeric Program: quadratic.py

 # quadratic.py
 # Program to calculate real roots
 # of a quadratic equation

 import math

 a, b, c = input("Enter the coefficients (a, b, c): ")

 discRoot = math.sqrt(b * b - 4 * a * c)
 root1 = (-b + discRoot) / (2 * a)
 root2 = (-b - discRoot) / (2 * a)

 print "\nThe solutions are:", root1, root2

 String Datatype

 String is an immutable sequence of characters

 Literal delimited by ’ or " or """
 s1 = ’This is a string’
 s2 = "This is another"
 s3 = "that’s one alright"
 s4 = """This is a long string that
 goes across multiple lines.
 It will have embedded end of lines"""

 Strings are indexed
 From the left starting at 0 or...
 From the right using negative indexes

 A character is just a string of length 1

 String Operations

 >>>"Hello, " + " world!"
 ’Hello, world!’

 >>> "Hello" * 3
 ’HelloHelloHello’

 >>> greet = "Hello John"
 >>> print greet[0], greet[2], greet[4]
 H l o

 >>> greet[4:9]
 ’o Joh’
 >>> greet[:5]
 ’Hello’
 >>> greet[6:]
 ’John’

 >>> len(greet)
 10

 Example Program: Month Abbreviation

 months = "JanFebMarAprMayJunJulAugSepOctNovDec"

 n = input("Enter a month number (1-12): ")
 pos = (n-1)*3
 monthAbbrev = months[pos:pos+3]

 print "The month abbreviation is", monthAbbrev+"."

 More String Operations

 Interactive input
 s = raw_input("Enter your name: ")

 Looping through a string
 for ch in name:
 print ch

 Type conversion
 to string
 >>> str(10)
 ’10’
 from string
 >>> eval(’10’)
 10
 >>> eval(’3 + 4 * 7’)
 31

 Standard String Library (string)

 capitalize(s) -- upper case first letter
 capwords(s) -- upper case each word
 upper(s) -- upper case every letter
 lower(s) -- lower case every letter

 ljust(s, width) -- left justify in width
 center(s, width) -- center in width
 rjust(s, width) -- right justify in width

 count(substring, s) -- count occurrences
 find(s, substring) -- find first occurrence
 rfind(s, substring) -- find from right end
 replace(s, old, new) -- replace first occurrence

 strip(s) -- remove whitespace on both ends
 rstrip(s) -- remove whitespace from end
 lstrip(s) -- remove whitespace from front

 split(s, char) -- split into list of substrings
 join(stringList) -- concatenate list into string

 Example Programs: Text/ASCII Conversions

 # Converting from text to ASCII codes
 message = raw_input("Enter message to encode: ")

 print "ASCII Codes:"
 for ch in message:
 print ord(ch),

 # Converting from ASCII codes to text
 import string

 inString = raw_input("Enter ASCII codes: ")

 message = ""
 for numStr in string.split(inString):
 message += chr(eval(numStr))

 print "Decoded message:", message

 String Formatting

 % operator inserts values into a template string (ala C

printf)
 <template-string> % (<values>)

 "Slots" specify width, precision, and type of value
 %<width>.<precision><type-character>

 Examples
 >>> "Hello %s %s, you owe %d" % ("Mr.", "X", 10000)
 ’Hello Mr. X, you owe 10000’

 >>> "ans = %8.3f" % 3.14159265
 ’ans = 3.142’

 print "%10.2f" % x # apparently, a throwback :-)

 File Processing

 Opening a file
 syntax: <filevar> = open(<name>, <mode>)
 example: infile = open("numbers.dat", "r")

 Reading from file
 syntax: <filevar>.read()
 <filevar>.readline()
 <filevar>.readlines()
 example: data = infile.read()

 Writing to file
 syntax: <filevar>.write(<string>)
 example: outfile.write(data)

 Example Program: Username Creation

 Usernames are first initial and 7 chars of lastname (e.g.

jzelle).

 inf = open("names.dat", "r")
 outf = open("logins.txt", "w")

 for line in inf:
 first, last = line.split()
 uname = (first[0]+last[:7]).lower()
 outf.write(uname+’\n’)

 inf.close()
 outf.close()

 Note use of string methods (Python 2.0 and newer)

 Functions

 Example:
 def distance(x1, y1, x2, y2):
 # Returns dist from pt (x1,y1) to pt (x2, y2)
 dx = x2 - x1
 dy = y2 - y1
 return math.sqrt(dx*dx + dy*dy)

 Notes:
 Parameters are passed by value
 Can return multiple values
 Function with no return statement returns None
 Allows Default values
 Allows Keyword arguments
 Allows variable number of arguments

 Teaching Tip: Uniform Memory Model

 Python has a single data model
 All values are objects (even primitive numbers)
 Heap allocation with garbage collection
 Assignment always stores a reference
 None is a special object (analogous to null)

 Pluses
 All assignments are exactly the same
 Parameter passing is just assignment

 Minuses
 Need to be aware of aliasing when objects are mutable

 Decisions

 if temp > 90:
 print "It’s hot!"

 if x <= 0:
 print "negative"
 else:
 print "nonnegative"

 if x > 8:
 print "Excellent"
 elif x >= 6:
 print "Good"
 elif x >= 4:
 print "Fair"
 elif x >= 2:
 print "OK"
 else:
 print "Poor"

 Booleans in Python

 Traditional Python: Conditions return 0 or 1 (for false, true)

 As of Python 2.3 bool type: True, False

 All Python built-in types can be used in Boolean exprs
 numbers: 0 is False anything else is true
 string: empty string is False, any other is true
 None: False

 Boolean operators: and, or, not (short circuit, operational)

 Loops

 For loop iterates over a sequence
 for <variable> in <sequence>:
 <body>

 sequences can be strings, lists, tuples, files, also user-defined classes
 range function produces a numeric list
 xrange function produces a lazy sequence

 Indefinite loops use while
 while <condition>:
 <body>

 Both loops support break and continue

 Lists: Dynamic Arrays

 Python lists are similar to vectors in Java
 dynamically sized
 indexed (0..n-1) sequences

 But better..
 Heterogeneous
 Built into language (literals [])
 Rich set of builtin operations and methods

 Sequence Operations on Lists

 >>> x = [1, "Spam", 4, "U"]
 >>> len(x)
 4

 >>> x[3]
 ’U’

 >>> x[1:3]
 [’Spam’, 4]

 >>> x + x
 [1, ’Spam’, 4, ’U’, 1, ’Spam’, 4, ’U’]

 >>> x * 2
 [1, ’Spam’, 4, ’U’, 1, ’Spam’, 4, ’U’]

 >>> for i in x: print i,
 1 Spam 4 U

 List are Mutable

 >>> x = [1, 2, 3, 4]

 >>> x[1] = 5
 >>> x
 [1, 5, 3, 4]

 >>> x[1:3] = [6,7,8]
 >>> x
 [1, 6, 7, 8, 4]

 >>> del x[2:4]
 >>> x
 [1, 6, 4]

 List Methods

 myList.append(x) -- Add x to end of myList
 myList.sort() -- Sort myList in ascending order
 myList.reverse() -- Reverse myList
 myList.index(s) -- Returns position of first x
 myList.insert(i,x) -- Insert x at position i
 myList.count(x) -- Returns count of x
 myList.remove(x) -- Deletes first occurrence of x
 myList.pop(i) -- Deletes and return ith element

 x in myList -- Membership check (sequences)

 Example Program: Averaging a List

 def getNums():
 nums = []
 while True:
 xStr = raw_input("Enter a number: ")
 if xStr == "": break
 nums.append(eval(xStr))
 return nums

 def average(lst):
 sum = 0.0
 for num in lst:
 sum += num
 return sum / len(lst)

 data = getNums()
 print "Average =", average(data)

 Tuples: Immutable Sequences

 Python provides an immutable sequence called tuple

 Similar to list but:
 literals listed in () Aside: singleton (3,)
 only sequence operations apply (+, *, len, in, iteration)
 more efficient in some cases

 Tuples (and lists) are transparently "unpacked"
 >>> p1 = (3,4)
 >>> x1, y1 = p1
 >>> x1
 3
 >>> y1
 4

 Dictionaries: General Mapping

 Dictionaries are a built-in type for key-value pairs (aka

hashtable)

 Syntax similar to list indexing

 Rich set of builtin operations

 Very efficient implementation

 Basic Dictionary Operations

 >>> dict = { ’Python’: ’Van Rossum’, ’C++’:’Stroustrup’,

’Java’:’Gosling’}

 >>> dict[’Python’]
 ’Van Rossum’

 >>> dict[’Pascal’] = ’Wirth’

 >>> dict.keys()
 [’Python’, ’Pascal’, ’Java’, ’C++’]

 >>> dict.values()
 [’Van Rossum’, ’Wirth’, ’Gosling’, ’Stroustrup’]

 >>> dict.items()
 [(’Python’, ’Van Rossum’), (’Pascal’, ’Wirth’), (’Java’,

’Gosling’), (’C++’, ’Stroustrup’)]

 More Dictionary Operations

 del dict[k] -- removes entry for k
 dict.clear() -- removes all entries
 dict.update(dict2) -- merges dict2 into dict
 dict.has_key(k) -- membership check for k
 k in dict -- Ditto
 dict.get(k,d) -- dict[k] returns d on failure
 dict.setDefault(k,d) -- Ditto, also sets dict[k] to d

 Example Program: Most Frequent Words

 import string, sys

 text = open(sys.argv[1],’r’).read()
 text = text.lower()
 for ch in string.punctuation:
 text = text.replace(ch, ’ ’)

 counts = {}
 for w in text.split():
 counts[w] = counts.get(w,0) + 1

 items = [(c,w) for (w,c) in counts.items()]
 items.sort()
 items.reverse()

 for c,w in items[:10]:
 print w, c

 Python Modules

 A module can be:
 any valid source (.py) file
 a compiled C or C++ file

 A single module can contain any number of structures
 Example: graphics.py (GraphWin, Point, Line, Circle, color_rgb,...)

 Locating modules
 Default search path includes Python lib and current directory
 Can be modified when Python starts or by program (sys.path)
 No naming or location restrictions

 Also supports directory structured packages
 from OpenGL.GL import *
 from OpenGL.GLUT import *

 Teaching Tip: Information Hiding

 In Python, Information hiding is by convention
 All objects declared in a module can be accessed by importers
 Names beginning with _ are not copied over in a from...import *

 Pluses
 Makes independent testing of modules easier
 Eliminates visibility constraints (public, protected, private, static, etc.)

 Minuses
 Language does not enforce the discipline

 Bottom-line: Teaching the conventions is easier
 The concept is introduced when students are ready for it
 Simply saying "don’t do that" is sufficient (when grades are involved).

 Python Classes: Quick Overview

 Objects in Python are class based (ala SmallTalk, C++,

Java)

 Class definition similar to Java
 class <name>:
 <method and class variable definitions>

 Class defines a namespace, but not a classic variable

scope
 Instance variables qualified by an object reference
 Class variables qualified by a class or object reference

 Multiple Inheritance Allowed

 Example: a generic multi-sided die

 from random import randrange

 class MSDie:

 instances = 0 # Example class variable

 def __init__(self, sides):
 self.sides = sides
 self.value = 1
 MSDie.instances += 1

 def roll(self):
 self.value = randrange(1, self.sides+1)

 def getValue(self):
 return self.value

 Using a Class

 >>> from msdie import *
 >>> d1 = MSDie(6)
 >>> d1.roll()
 >>> d1.getValue()
 6
 >>> d1.roll()
 >>> d1.getValue()
 5
 >>> d1.instances
 1
 >>> MSDie.instances
 1
 >>> d2 = MSDie(13)
 >>> d2.roll()
 >>> d2.value
 7
 >>> MSDie.instances
 2

 Example with Inheritance

 class SettableDie(MSDie):

 def setValue(self, value):
 self.value = value

 --
 >>> import sdie
 >>> s = sdie.SettableDie(6)
 >>> s.value
 1
 >>> s.setValue(4)
 >>> s.value
 4
 >>> s.instances
 3

 Notes on Classes

 Data hiding is by convention

 Namespaces are inspectable
 >>> dir(sdie.SettableDie)
 [’__doc__’, ’__init__’, ’__module__’, ’getValue’,

’instances’, ’roll’, ’setValue’]
 >>> dir(s)
 [’__doc__’, ’__init__’, ’__module__’, ’getValue’,

’instances’, ’roll’, ’setValue’, ’sides’, ’value’]

 Attributes starting with __ are "mangled"

 Attributes starting and ending with __ are special hooks

 Documentation Strings (Docstrings)

 Special attribute __doc__ in modules, classes and

functions

 Python libraries are well documented
 >>> from random import randrange
 >>> print randrange.__doc__
 Choose a random item from range(start, stop[, step]).

 This fixes the problem with randint() which includes the
 endpoint; in Python this is usually not what you want.
 Do not supply the ’int’ and ’default’ arguments.

 Used by interactive help utility
 >>> help(randrange)
 $ pydoc random.randrange

 Docstrings are easily embedded into new code
 can provide testing framework

 Another Class: Just for Fun

 #file: stack.py

 """Implementation of a classic
 stack data structure: class Stack"""

 class Stack:

 "Stack implements a classic stack with lists"

 def __init__(self): self.data = []

 def push(self, x): self.data.append(x)

 def top(self): return self.data[-1]

 def pop(self): return self.data.pop()

 Advantages for CS1

 Simple language = More time for concepts

 Safe loop and rich built-ins = Interesting programs early

 Free Language and IDE = Easy for students to acquire

 Dynamic features = Ease of experimentation

 Less code = More programming assignments

 Our Approach

 Spiral of imperative and OO concepts (objects ontime?)

 Emphasize:
 Algorithmic thinking
 Universal design/programming patterns (not Python)

 Outline
 Simple numeric processing first
 String processing by analogy to numeric
 Using objects via graphics
 Functions and control structures
 Top-down design
 Classes
 Collections
 OO Design
 Algorithm Design and Recursion

 Spiral introduction of language features

 Graphics Library

 Homegrown 2D graphics package (graphics.py)

 Thin wrapper over Python standard GUI package Tkinter

 Why?
 Students LOVE graphics, but it adds complexity
 Our package "hides" the event loop
 Teaches graphics and object concepts

 Natural progression
 Learn by using concrete objects
 Build own widgets
 Implement simple event loop

 Graphics Example: triangle.py

 from graphics import * # our custom graphics

 win = GraphWin("Draw a Triangle")
 win.setCoords(0.0, 0.0, 10.0, 10.0)
 message = Text(Point(5, 0.5), "Click on three points")
 message.draw(win)
 p1 = win.getMouse()
 p1.draw(win)
 p2 = win.getMouse()
 p2.draw(win)
 p3 = win.getMouse()
 p3.draw(win)
 triangle = Polygon(p1,p2,p3)
 triangle.setFill("peachpuff")
 triangle.setOutline("cyan")
 triangle.draw(win)
 message.setText("Click anywhere to quit.")
 win.getMouse()

 Graphics Example: Triangle Screenshot

 Graphics Example: Face

 Assignment: Draw something with a face

 Graphics Example: Blackjack Project

 Other Approaches to CS1

 Objects First
 Rich set of readily useable objects

 Multi-Paradigm
 Peter Norvig: ’...a dialect of LISP with "traditional" syntax.’

 Breadth-First
 perfect for first brush of programming

 3D Graphics
 VPython -- visualization for mere mortals

 GUI/Events early
 Tkinter is (arguably) the simplest GUI toolkit going

 What About CS2?

 Currently we use Java in CS2

 Why?
 Want our students to see static typing
 Java is a high-demand language
 Switching languages is good for them

 It works
 Students are better programmers coming in
 The conceptual base is the same
 They find Java annoying, but not difficult
 Python is our pseudo-code

 My experience
 CS2 is at least as smooth as before
 Upper-level classes much better

 Python Resources

 Textbooks (CS1, CS2)
 "Python: How to Program," Deitel, Deitel, Liperi, Weidermann, and

Liperi, (Prentice Hall)
 "How to Think Like a Computer Scientist: Learning with Python,"

Downey, Elkner, and Meyers (Green Tea Press)
 "Python Programming: An Introduction to Computer Science," Zelle

(Franklin, Beedle, and Associates)

 Technical Python Books
 Too many to list, see Python web site and Amazon
 Personal Favorite: "Python in a Nutshell," Alex Martelli (O’Reilly and

Assoc.)

 Python Web Sites
 www.python.org -- The site for everything Pythonic
 www.vex.net/parnassus/ -- Searchable database of Python add-ons

 Conclusions

 Python Rocks!

 You’ll Never Go Back

